MTA1 promotes cell proliferation via DNA damage repair in epithelial ovarian cancer.
نویسندگان
چکیده
We examined whether metastasis-associated gene 1 (MTA1) promotes cell proliferation via DNA damage repair in ovarian cancer. MTA1 was successfully down-regulated using small interfering RNA in the epithelial ovarian cancer cell lines SKOV-3 and OVCAR-3. Cell growth was evaluated through MTT and colony formation assays. Fluorescence-activated cell sorting analysis was used to evaluate the distribution of cells in the cell cycle, and cytotoxicity assays were performed to study cell sensitivity to cisplatin. A neutral comet assay was used to measure levels of ionizing radiation-induced DNA damage in SKOV-3 cells, and Western blot analyses were carried out to examine the expression of key proteins involved in DNA damage repair pathways. MTA1 knockdown markedly inhibited cell growth and led to S phase cell cycle arrest. In addition, MTA1 depletion conferred sensitivity of ovarian cancer cells to cisplatin. Moreover, MTA1 depletion increased the level of ionizing radiation-induced DNA damage and caused irreparable damage, which was illustrated by a remarkable increase and persistent existence of a comet tail as well as protein expression levels of γH2AX, pRPA, and pChk1, all of which play critical roles in DNA repair. Thus, MTA1 promotes the proliferation of epithelial ovarian cancer cells by enhancing DNA repair.
منابع مشابه
Effects of low dose radiation on the expression of proteins related to DNA repair requiring Caveolin-1 in human mammary epithelial cells
Background: Radiotherapy is an effective and important therapeutic method for breast cancer, but at the same time it has a radiation-induced bystander effect on normal tissue around the tumor. Repair of double-strand breaks (DSBs) by normal cells can reduce the extent of damage caused by this effect. Caveolin-1 (Cav-1) is an important regulatory molecule in cell signal transduction. However, th...
متن کاملMTA1 promotes nasopharyngeal carcinoma growth in vitro and in vivo
BACKGROUND The prognostic value of metastasis-associated gene 1 (MTA1) in nasopharyngeal carcinoma (NPC) has been suggested. However, there is still no direct evidence that MTA1 promotes NPC growth in vivo. In this study, we aimed to investigate the function of MTA1 in the regulation of NPC cell proliferation and tumorigenesis in vitro and in vivo. METHODS Stable MTA1 knockdown or overexpress...
متن کاملRevelation of p53-independent function of MTA1 in DNA damage response via modulation of the p21 WAF1-proliferating cell nuclear antigen pathway.
Although metastasis-associated protein 1 (MTA1), a component of the nucleosome remodeling and deacetylase (NuRD) complex, is a DNA-damage response protein and regulates p53-dependent DNA repair, it remains unknown whether MTA1 also participates in p53-independent DNA damage response. Here, we provide evidence that MTA1 is a p53-independent transcriptional corepressor of p21(WAF1), and the under...
متن کاملUbiquitin-Conjugating Enzyme 9 Promotes Epithelial Ovarian Cancer Cell Proliferation in Vitro
Epithelial ovarian cancer (EOC) is one of the leading causes of cancer deaths in women worldwide. Ubiquitin-conjugating enzyme 9 (Ubc9), the sole conjugating enzyme for sumoylation, regulates protein function and plays an important role in sumoylation-mediated cellular pathways. Although sumoylation plays a key role in DNA repair and tumorgenesis, whether Ubc9 is involved in EOC progression rem...
متن کاملMetastasis-associated protein 1/nucleosome remodeling and histone deacetylase complex in cancer.
Cancer cells frequently exhibit deregulation of coregulatory molecules to drive the process of growth and metastasis. One such group of ubiquitously expressed coregulators is the metastasis-associated protein (MTA) family, a critical component of the nucleosome remodeling and histone deacetylase (NuRD) complex. MTA1 occupies a special place in cancer biology because of its dual corepressor or c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Genetics and molecular research : GMR
دوره 13 4 شماره
صفحات -
تاریخ انتشار 2014